Tutorial of Zero One MNIST (ZOM)

1 Motivation

The ZOM project is funded to help you with your homework HW3. You may applicate this project
as a data loader in your Logistic Regression program for the last question.

2 Introduction of MNIST & ZOM

The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of
10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-
normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and pattern recognition
methods on real-world data while spending minimal efforts on preprocessing and formatting.

Web of MNIST is here: MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris
Burges

Only two classis of data in the MNIST dataset are selected for the ZOM project, data with label 0
and label 1.To be convenience, these data have be reformed as python list and saved as pickle
file.

Some examples are shown in the section 4.

3 Requirement and Contents

3.1 Requirement

e Python3
e Numpy
e Opencv
e scikit-learn

3.2 Contents

e readme.md:readme file

e readme.pdf:readme file

e train_dataset.pk]l :train dataset, 12665 data is involved
e test_dataset.pkl :test dataset, 2115 data is involved

e image0.png:image example of MNIST data with label 0

e imagel.png:image example of MNIST data with label 1

4 Tutorial

e |Install related python package.

Attention: This tutorial encourages you to use Pypi to maintain the python package!

af://n0
af://n2
af://n4
http://yann.lecun.com/exdb/mnist/
af://n10
af://n11
af://n21
af://n35

opencv: an image processing package
pip install opencv-python

numpy
pip install numpy

sklearn
pip install scikit-Tearn # you need a good net condition

e Save python object as a pickle file.

import pickle
pickle helps to save and Toad your python object
x =1
with open('x.pkT', 'wb+') as file:
pickle.dump(x, file)

e Read python object from a pickle file.

import pickle
pickle helps to save and Toad your python object
with open('x.pk1', 'rb+') as file:
x = pickle.load(file)
print(x)

e Read one data in the train dataset, print its label and show its image.

import pickle
import cv2 as cv # import opencv

with open('train_dataset.pkl', 'rb+') as file:
train_dataset = pickle.load(file)

index = 6
image, label = train_dataset[index]
print(label)

cv.imshow('image', image) # image of MNIST dataset is very saml1(28%28), find
it!
cv.waitkey() # press one key on your keyboard to finish the program,

we use it to keep the image showing

image like this will be shown

/

e Flatten the train data and create the train matrix with size M x N = (28 % 28) x 12665.

(This code may take some minutes to run.)

import pickle

import numpy as np

with open('train_dataset.pkl', 'rb+') as file:
train_dataset = pickle.load(file)

train_matrix = None
for img, Tlabel in train_dataset:
if train_matrix is None:
train_matrix = np.reshape(img, [-1, 11)
else:
data = np.reshape(img, [-1, 1])
train_matrix = np.concatenate([train_matrix, data], axis=-1)

print(np.shape(train_matrix))
(784, 12665)

e Logistic regression with scikit-learn(sklearn) package

import pickle
import numpy as np
from sklearn import linear_model

1. read train dataset and reformed it as matrix(image) and vector(label)
with open('train_dataset.pkl', 'rb+') as file:
train_dataset = pickle.load(file)

train_matrix = None
train_label = []
for img, label in train_dataset:
if train_matrix is None:
train_matrix = np.reshape(img, [-1, 1])
else:
data = np.reshape(img, [-1, 1])
train_matrix = np.concatenate([train_matrix, data], axis=-1)
train_1label.append(Tabel)

2. train the LogReg model
model = linear_model.LogisticRegression()
model.fit(train_matrix.T, train_label)

3. read test dataset and reformed it as matrix(image) and vector(label)
with open('test_dataset.pkl', 'rb+') as file:
test_dataset = pickle.load(file)

test_matrix = None
test_Tlabel = []
for img, label in test_dataset:
if test_matrix is None:
test_matrix = np.reshape(img, [-1, 1])
else:
data = np.reshape(img, [-1, 1])
test_matrix = np.concatenate([test_matrix, data], axis=-1)
test_label.append(Tabel)

4. predict with trained model
predict = model.predict_proba(test_matrix.T)
acc = model.score(test_matrix.T, test_label)

print('accuracy is {:.2f} %'.format(acc*100))

accuracy is 99.76 %

	Tutorial of Zero One MNIST (ZOM)
	1 Motivation
	2 Introduction of MNIST & ZOM
	3 Requirement and Contents
	3.1 Requirement
	3.2 Contents

	4 Tutorial

