
Tutorial of Zero One MNIST (ZOM)
1 Motivation
The ZOM project is funded to help you with your homework HW3. You may applicate this project
as a data loader in your Logistic Regression program for the last question.

2 Introduction of MNIST & ZOM
The MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of
10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-
normalized and centered in a fixed-size image.

It is a good database for people who want to try learning techniques and pattern recognition
methods on real-world data while spending minimal efforts on preprocessing and formatting.

Web of MNIST is here: MNIST handwritten digit database, Yann LeCun, Corinna Cortes and Chris
Burges

Only two classis of data in the MNIST dataset are selected for the ZOM project, data with label 0
and label 1.To be convenience, these data have be reformed as python list and saved as pickle
file.

Some examples are shown in the section 4.

3 Requirement and Contents

3.1 Requirement

Python3
Numpy
Opencv
scikit-learn

3.2 Contents

readme.md : readme file
readme.pdf : readme file
train_dataset.pkl : train dataset, 12665 data is involved
test_dataset.pkl : test dataset, 2115 data is involved
image0.png : image example of MNIST data with label 0
image1.png : image example of MNIST data with label 1

4 Tutorial
Install related python package.

Attention: This tutorial encourages you to use Pypi to maintain the python package!

af://n0
af://n2
af://n4
http://yann.lecun.com/exdb/mnist/
af://n10
af://n11
af://n21
af://n35

Save python object as a pickle file.

Read python object from a pickle file.

Read one data in the train dataset, print its label and show its image.

image like this will be shown

Flatten the train data and create the train matrix with size .

(This code may take some minutes to run.)

opencv: an image processing package

pip install opencv-python

numpy

pip install numpy

sklearn

pip install scikit-learn # you need a good net condition

import pickle

pickle helps to save and load your python object

x = 1

with open('x.pkl', 'wb+') as file:

 pickle.dump(x, file)

import pickle

pickle helps to save and load your python object

with open('x.pkl', 'rb+') as file:

 x = pickle.load(file)

print(x)

import pickle

import cv2 as cv # import opencv

with open('train_dataset.pkl', 'rb+') as file:

 train_dataset = pickle.load(file)

index = 6

image, label = train_dataset[index]

print(label)

cv.imshow('image', image) # image of MNIST dataset is very samll(28*28), find

it!

cv.waitKey() # press one key on your keyboard to finish the program,

 # we use it to keep the image showing

import pickle

Logistic regression with scikit-learn(sklearn) package

import numpy as np

with open('train_dataset.pkl', 'rb+') as file:

 train_dataset = pickle.load(file)

train_matrix = None

for img, label in train_dataset:

 if train_matrix is None:

 train_matrix = np.reshape(img, [-1, 1])

 else:

 data = np.reshape(img, [-1, 1])

 train_matrix = np.concatenate([train_matrix, data], axis=-1)

print(np.shape(train_matrix))

(784, 12665)

import pickle

import numpy as np

from sklearn import linear_model

1. read train dataset and reformed it as matrix(image) and vector(label)

with open('train_dataset.pkl', 'rb+') as file:

 train_dataset = pickle.load(file)

train_matrix = None

train_label = []

for img, label in train_dataset:

 if train_matrix is None:

 train_matrix = np.reshape(img, [-1, 1])

 else:

 data = np.reshape(img, [-1, 1])

 train_matrix = np.concatenate([train_matrix, data], axis=-1)

 train_label.append(label)

2. train the LogReg model

model = linear_model.LogisticRegression()

model.fit(train_matrix.T, train_label)

3. read test dataset and reformed it as matrix(image) and vector(label)

with open('test_dataset.pkl', 'rb+') as file:

 test_dataset = pickle.load(file)

test_matrix = None

test_label = []

for img, label in test_dataset:

 if test_matrix is None:

 test_matrix = np.reshape(img, [-1, 1])

 else:

 data = np.reshape(img, [-1, 1])

 test_matrix = np.concatenate([test_matrix, data], axis=-1)

 test_label.append(label)

4. predict with trained model

predict = model.predict_proba(test_matrix.T)

acc = model.score(test_matrix.T, test_label)

print('accuracy is {:.2f} %'.format(acc*100))

accuracy is 99.76 %

	Tutorial of Zero One MNIST (ZOM)
	1 Motivation
	2 Introduction of MNIST & ZOM
	3 Requirement and Contents
	3.1 Requirement
	3.2 Contents

	4 Tutorial

