Optimization Theory and Algorithm

Homework 3 - 05/21/2021

Homework 3

Lecturer:Xiangyu Chang

Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

HW 1 (1) Let $A = \begin{bmatrix} 1 & 1 & 2 \\ 2 & 1 & 3 \\ 3 & 1 & 4 \end{bmatrix}$, then compute the column space C(A) and null space N(A).

(2) Prove that for any $A \in \mathbb{R}^{m \times n}$, it has

$$C(A) \perp N(A^{\top}). \tag{1}$$

HW 2 (1) Prove ℓ_0 norm is not a vector norm.

- (2) Prove $\sigma_1 = \sup_{\|\mathbf{x}\|_2=1} \|A\mathbf{x}\|_2$, where σ_1 is the biggest singular value of A.
- (3) $||AB||_F \leq ||A||_2 ||B||_F$ for any $A \in \mathbb{R}^{m \times n}, B \in \mathbb{R}^{n \times p}$.

HW 3 Let

$$f(\mathbf{x}) = \sum_{i=1}^{m} \log(1 + \exp(\langle \mathbf{a}_i, \mathbf{x} \rangle)) - \langle \mathbf{b}, A\mathbf{x} \rangle$$

be the objective function of logistic regression, then

- (1) please prove that $f(\mathbf{x})$ is β -smooth;
- (2) write down the iterative formulation of Gradient Descent algorithm for Logistic Regression.
- **HW 4** (1) Let $C \subseteq \mathbb{R}^n$ be a convex set, with $\mathbf{x}_1, \ldots, \mathbf{x}_k \in C$, and let $\theta_1, \theta_2, \ldots, \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \sum_i \theta_i = 1$. Show that $\theta_1 \mathbf{x}_1 + \theta_2 \mathbf{x}_2 + \cdots + \theta_k \mathbf{x}_k \in C$.
 - (2) Prove that the ellipsoid $E(\mathbf{x}_c) = \{\mathbf{x} | (\mathbf{x} \mathbf{x}_c)^\top A(\mathbf{x} \mathbf{x}_c) \le 1, A \in \mathcal{S}_{++}^n \}$ is a convex set.
 - (3) Suppose that f is a convex function, and denote the set contains all the points which can achieve the global minimum of f is G. Please prove that G is convex.
- **HW 5** (1) Let **a** and **b** be distinct points in \mathbb{R}^n . Show that the set of all points that are closer to **a** than **b** is a halfspace.
- (2) What is the distance between two parallel hyperplances $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x}=b_1\}$ and $\{\mathbf{x}|\mathbf{a}^{\top}\mathbf{x}=b_2\}$?

HW 6 Prove the following functions are convex.

- (1) Negative Entropy: $f(x) = x \log(x), x > 0.$
- (2) Quadratic-over-linear function: $f(x,y) = \frac{x^2}{y}$ with $dom(f) = \{(x,y) \in \mathbb{R}^2 | y > 0\}.$
- (3) $f(\mathbf{x}) = ||A\mathbf{x} b||.$
- (4) Supporting function: $S_C(\mathbf{x}) = \sup_{\mathbf{b} \in C} \mathbf{b}^\top \mathbf{x}.$

(5) The distance of a point \mathbf{x} to a set $S \subset \mathbb{R}^n$ defined as $d(\mathbf{x}, S) = \inf_{\mathbf{b} \in S} \|\mathbf{x} - \mathbf{b}\|$.

$$\mathbf{HW \ 7} \ Let \ A = U\Sigma V = \begin{bmatrix} -0.91 & 0.37 & -0.18\\ 0.19 & 0.78 & 0.59\\ 0.36 & 0.50 & -0.78 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.25 & -0.73 & -0.62\\ -0.74 & -0.56 & 0.35\\ -0.61 & 0.37 & -0.69 \end{bmatrix} and \mathbf{b} = (-0.29, -2.09, -0.98)^{\top}$$

then consider a LS problem:
$$\min_{\mathbf{x}} \frac{1}{2} \| A\mathbf{x} - \mathbf{b} \|^{2}.$$
(2)

- \bullet Implement gradient descent algorithm with the backtracking line search for solving the LS problem.
- Implement gradient descent for β -smooth function for solving the LS problem.
- Compare the convergence speed for different A.

$$A_{1} = \begin{bmatrix} -0.91 & 0.37 & -0.18\\ 0.19 & 0.78 & 0.59\\ 0.36 & 0.50 & -0.78 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 10^{-2} \end{bmatrix} \begin{bmatrix} 0.25 & -0.73 & -0.62\\ -0.74 & -0.56 & 0.35\\ -0.61 & 0.37 & -0.69 \end{bmatrix},$$
(3)

and

$$A_{2} = \begin{bmatrix} -0.91 & 0.37 & -0.18\\ 0.19 & 0.78 & 0.59\\ 0.36 & 0.50 & -0.78 \end{bmatrix} \begin{bmatrix} 3 & 0 & 0\\ 0 & 2 & 0\\ 0 & 0 & 10^{-6} \end{bmatrix} \begin{bmatrix} 0.25 & -0.73 & -0.62\\ -0.74 & -0.56 & 0.35\\ -0.61 & 0.37 & -0.69 \end{bmatrix}.$$
(4)

HW 8 (Additional Question) Let $A \in \mathbb{R}^{m \times n}$ with its singular value decomposition as $A = \sum_{i=1}^{r} \sigma_i u_i v_i^{\top}, \sigma_1 \ge \sigma_2 \ge \cdots \ge \sigma_r \ge 0$. Assume that $A_k = \sum_{i=1}^{k} \sigma_i u_i v_i^{\top}$, where $k \le r$. Then prove that

$$A_k = \arg\min_{B \in \mathbb{R}^{m \times n}, rank(B) \le k} \|A - B\|_F^2.$$
(5)

HW 9 (Additional Question) Logistic Regression for classifying digital numbers 0 and 1. Please see the readme file.

References