
Optimization Theory and Algorithm II October 8, 2022

Homework 3
Lecturer:Xiangyu Chang Scribe: Xiangyu Chang

Edited by: Xiangyu Chang

HW 1 Prove Theorem 1, 3 and 4 in Lecture 7.

HW 2 The problem of finding the shortest distance from a point x0 to the hyperplane {x|Ax = b}, where
A has full row rank, can be formulated as the quadratic program

min
x

1

2
∥x0 − x∥2

s.t. Ax = b.

(i) Show that optimal solution is
x∗ = x0 +A⊤(AA⊤)−1(Ax0 − b).

(ii) Using above results, provide the projected gradient descent algorithm for

min
x

f(x) (1)

s.t. Ax = b. (2)

HW 3 We consider the following optimization problem:

min
x

f(x) =
1

m

m∑
i=1

fi(x).

And assume that f is β-smooth and α-strong convex. Using mini-bath SGD with fixed learning rate to solve
it as

xt+1 = xt − s

nb

∑
it∈Dt

∇fit(x
t),

where Dt ⊂ {1, 2, . . . ,m} are drawn randomly and |Dt| = nb is the size of Dt. We further suppose that

(1) The index Dt does not depended from the previous D0, D1, . . . , Dt−1.

(2) Eit∈Dt
[∇fit(x

t)] = ∇f(xt) (Unbiased Estimation).

(3) Eit∈Dt
[∥∇fit(x

t)∥2] ≤ σ2 + ∥∇f(xt)∥2 (control the variance).

Prove

(i) EDt
∥gt∥2 = σ2

nb
+ ∥∇f(xt)∥2, where gt = 1

nb

∑
i∈Dt

∇fi(x
t).

(ii)

EDt [f(x
t+1)] ≤ f(xt)− s∇f(xt)⊤EDt [g

t] +
βs2

2
EDt [∥gt∥2].

(iii)

EDt [f(x
t+1)− f(xt)] ≤ −(s− βs2

2
)∥∇f(xt)∥2 + βs2

2nb
σ2.

1



(iv) Then

E[f(xt+1)− f∗]− βs

2nbα(2− βs)
σ2 ≤ (1− αs(2− βs))

[
E[f(xt)− f∗]− βs

2nbα(2− βs)
σ2

]
.

HW 4 Read Textbook Page 470. And select one of the data set to implement

(1) SGD for Logistic Regression with fixed learning rate.

(2) SGD for Logistic Regression with decreasing learning rate.

(2) SVRG for Logistic Regression.
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